FIRE EFFECTS ON NITROGEN POOLS AND DYNAMICS IN TERRESTRIAL ECOSYSTEMS: A META-ANALYSIS

SHIQIANG WAN,1 DAFENG HUI, AND YIQI LUO
Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019-0245 USA

Abstract. A comprehensive and quantitative evaluation of the effects of fire on ecosystem nitrogen (N) is urgently needed for directing future fire research and management. This study used a meta-analysis method to synthesize up to 185 data sets from 87 studies published from 1955 to 1999. Six N response variables related to fire were examined: fuel N amount (FNA) and concentration (FNC), soil N amount (SNA) and concentration (SNC), and soil ammonium (NH$_4^+$) and nitrate (NO$_3^-$) pools. When all comparisons (fire treatment vs. control) were considered together, fire significantly reduced FNA (58%), increased soil NH$_4^+$ (94%) and NO$_3^-$ (152%), and had no significant influences on FNC, SNA, and SNC. The responses of N to fire varied with different independent variables, which were vegetation type, fire type, fuel type, fuel consumption amount, fuel consumption percentage, time after fire, and soil sampling depth. The response of FNA to fire was significantly influenced by vegetation type, fuel type, and fuel consumption amount and percentage. The reduction in FNA was linearly correlated with fuel consumption percentage ($r^2 = 0.978$). The response of FNC to fire was only affected by fuel type. None of the seven independent variables had any effect on SNA. The responses of SNC, NH$_4^+$, and NO$_3^-$ depend on soil sampling depth. The responses of both NH$_4^+$ and NO$_3^-$ to fire were significantly affected by fire type and time after fire but had different temporal patterns. The soil NH$_4^+$ pool increased approximately twofold immediately after fire, then gradually declined to the prefire level after one year. The fire-induced increase in the soil NO$_3^-$ pool was small (24%) immediately after fire, reached a maximum of approximately threefold of the prefire level within 0.5–1 year after fire, and then declined. This study has identified the general patterns of the responses of ecosystem N that occur for several years after fire. A key research need relevant to fire management is to understand how the short-term responses of N to fire influence the function and structure of terrestrial ecosystems in the long term.

Key words: biomass; fire; forests; fuel; grasslands; meta-analysis; nitrogen; prescribed burning; response ratio; shrublands; slash burning; wildfire.

INTRODUCTION

Prior to the 1930s, fire was generally considered a destructive and undesirable force that occurred with varying frequency in terrestrial ecosystems (Clements 1916, Fowell and Stephenson 1933). This point of view resulted in the suppression of natural fire for almost half a century (Kozlowski and Ahlgren 1974). However, since the 1970s, critical scientific evaluations have indicated a potential usefulness of fire in ecosystem management (Kozlowski and Ahlgren 1974, Raison 1979), e.g., controlling fuel (combustible material) levels and thereby avoiding catastrophic wildfire (Wagle and Eakle 1979), restoring forest ecosystems (Kaye et al. 1999, Vose et al. 1999), maintaining species composition and richness in grasslands (Collins and Wallace 1990, Collins et al. 1995, Pendergrass et al. 1999), and improving water yields in catchment areas (Schindler et al. 1980, Bosch et al. 1984).

As a powerful and instantaneous modifier of the environment, fire potentially has a profound, long-term influence on nutrient cycles in ecosystems by changing the form, distribution, and amount of nutrient as well as by changing species composition, plant growth, soil biota, leaching, and erosion (McNabb and Cromack 1990, Grogan et al. 2000). Much attention has been paid to nitrogen (N) pools and dynamics associated with fire because N often limits primary productivity in natural ecosystems (Christensen 1977, Woodmansee and Wallach 1981, Maars et al. 1983, Penn et al. 1998). In addition, N is easily lost during fuel combustion (Grier 1975, DeBano et al. 1979, Raison et al. 1985a, Gillon and Rapp 1989) because N volatilizes at a relatively low temperature (200°C; Knight 1966, White et al. 1973). The volatilization temperature of N can easily be reached in fire if fine fuel exceeds 3370 kg/ha (Stinson and Wright 1969).

Direct N losses during fuel combustion are usually in the forms of gasification, volatilization, and ash convection (Christensen 1994). It is commonly accepted that N loss through combustion is significantly correlated with fuel consumption and/or fire intensity (DeBano and Conrad 1978, Raison et al. 1985a, Schoch and Binkley 1986, Feller 1988, O’Connell and McCaw 1997, Beliillas and Feller 1998). Depending on types
of vegetation, fire, and fuel (Binkley et al. 1992a), the amounts of N losses during burning can vary from 8.5 kg/ha in a grassland (Medina 1982) to 907 kg/ha in a coniferous forest (Grier 1975) to 1604 kg/ha in a Brazilian tropical forest (Kauffman et al. 1995).

Reports about the impacts of fire on total soil N are highly variable because of differences in vegetation (Dyrness et al. 1989), topography (Turner et al. 1997, Vose et al. 1999), fire regimes (e.g., frequency, intensity, and season; Covington and Sackett 1984, Blair 1997), and sampling methods (Monleon et al. 1997). However, most studies suggest a consistent pattern that fire can increase the availability of soil ammonium (NH$_4^+$) and nitrate (NO$_3^-$; Christensen 1973, Kovacic et al. 1986, Rapp 1990, Covington et al. 1991, Baldwin and Morse 1994, Kaye and Hart 1998). The increases in soil NH$_4^+$ and NO$_3^-$ have been attributed to the pyrolysis of organic material, increased N mineralization, and the leaching of N from the forest floor into the soil after fire (Covington and Sackett 1984, Grove et al. 1986, Knoepp and Swank 1993, Baldwin and Morse 1994, Kaye and Hart 1998, Lynds and Baldwin 1998).

As one of the most limiting nutrients, N plays an important role in postfire recovery of ecosystem productivity. In order to better understand how N responses may influence postfire ecosystem dynamics, it is imperative to synthesize the highly variable results from individual studies across various ecosystems. Such syntheses, which are also essential to policy making in fire management, have been conducted primarily by narrative literature reviews in the past (Ahlgren and Ahlgren 1960, Kozlowski and Ahlgren 1974, Raison 1979, Wells et al. 1979, Woodmansee and Wallach 1981, Johnson et al. 1998). However, conclusions regarding the effects of fire on ecosystem N, particularly on soil N, remain controversial. One reason for the controversy is that narrative reviews are largely qualitative and subjective (Osenberg et al. 1999). Other possible reasons include the inconsistency in the units of expressing N and in soil sampling depths (DeBano et al. 1998). To help resolve the controversy, a comprehensive evaluation of the effects of fire on ecosystem N with quantitative methods is necessary.

In this study, we synthesized experimental results about the effects of fire on N pools and dynamics in terrestrial ecosystems. These results were drawn from studies concerning different vegetation types, fire types, fuel types, fuel consumption amounts and percentages, time after fire, and soil sampling depth. A meta-analysis approach, which provides statistically unbiased estimates of treatment effects across multiple studies, was used to address the following questions. First, to what extent will various ecosystem N pools be affected by fire? Second, how will vegetation, fire, and fuel as well as soil sampling depth affect N responses to fire? Finally, what are the temporal patterns of N responses after fire?

Materials and Methods

Approach

Meta-analysis is a quantitative method used to compare and synthesize results of multiple independent studies with an attempt to address a common question or to test a common hypothesis. Results from similar studies (e.g., studies of the effects of fire on ecosystem N in this paper) are first gathered and compiled into a common database. These results are then combined to estimate the magnitude of a treatment effect. In this study, a response ratio (RR, the ratio of means for a measured variable between the fire treatment group and the control group) was used as an index of the estimated magnitude of the fire effect. In essence, RR quantifies the proportional change that results from an experimental manipulation or treatment (Curtis and Wang 1998, Hedges et al. 1999). The significance of RR is statistically tested to determine whether a response variable of the treatment group is different from that of the control group. The heterogeneity of RR is calculated to examine whether all studies share a common magnitude of the treatment effect. Finally, the RR is grouped according to independent variables (e.g., vegetation type and time after fire in this study) for the purpose of detecting the differences in RR among groups. Compared to the traditional qualitative and narrative reviews, meta-analysis has the advantages of objectivity and better control of Type II errors; i.e., failure to reject null hypotheses that are false (Arnqvist and Wooster 1995) and thus has the potential to resolve longstanding scientific debates (Gurevitch et al. 1992).

Extracting data from published results

Our literature survey was intended to be as inclusive as possible. We extracted data from publications in the literature for six N response variables: fuel N amount (FNA), fuel N concentration (FNC), soil N amount (SNA), soil N concentration (SNC), soil ammonium (NH$_4^+$) pool, and soil nitrate (NO$_3^-$) pool. We also selected seven independent variables which are relevant to the six response variables. The seven independent variables were vegetation type, fire type, fuel type, fuel consumption amount (FCA), fuel consumption percentage (FCP), time after fire (TAF), and soil sampling depth (Tables 1 and 2). Vegetation type had four groups, which were broad-leaved forests (BF), coniferous forests (CF), grasslands (GL), and shrublands (SB). Fire type had three groups, which were prescribed burning (Pres-B), slash burning (SL-B), and wildfire (WF). Fuel type had four groups, which were above-ground biomass (AGB), forest floor (FF), forest floor plus understory (FF+$+$US), and slash plus forest floor (SL+FF). From 87 studies published between 1955 and 1999 (Table 1), we examined 57, 48, 40, 62, 184, and 185 comparisons (fire treatment vs. control) for the analyses of FNA, FNC, SNA, SNC, NH$_4^+$, and NO$_3^-$, respectively (Tables 2 and 3).
<table>
<thead>
<tr>
<th>VT</th>
<th>Fire</th>
<th>Fuel</th>
<th>FNA</th>
<th>FNC</th>
<th>SNA</th>
<th>SNC</th>
<th>NH$_4^+$</th>
<th>NO$_3^-$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>AGB</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>Kauffman et al. (1994)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Raison et al. (1985a)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Raison et al. (1985b)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF+US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td>Grove et al. (1986)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF+US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O’Connell et al. (1979)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF+US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Raison et al. (1985b)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>AGB</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clinton et al. (1996)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>AGB</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kauffman et al. (1993)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>AGB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Uhl and Jordan (1984)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td>×</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Ellis and Graley (1983)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>Ellis et al. (1982)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>Evel et al. (1981)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td>Humphreys and Lambert (1965)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kauffman et al. (1993)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kauffman et al. (1995)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td>Ludwig et al. (1998)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nye and Greenland (1964)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>AGB</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td>Adams and Attiwill (1986)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>AGB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blank and Zamudio (1998)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>AGB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Busch and Smith (1993)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>AGB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kirkpatrick and Dickinson (1984)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>AGB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rashid (1987)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>AGB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weston and Attiwill (1990)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beaton (1959)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>FF</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dyrenses et al. (1989)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>FF+US</td>
<td>×</td>
<td>x</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>Adams and Attiwill (1986)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>FF+US</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weston and Attiwill (1990)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adams and Boyle (1980)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weston and Attiwill (1990)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>SL+FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anderson and Menges (1997)</td>
</tr>
<tr>
<td>BF</td>
<td>WF</td>
<td>SL+FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alban (1977)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>AGB</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bell and Binkley (1989)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>Binkley et al. (1992b)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>Covington and Sackett (1986)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>Covington and Sackett (1992)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>De Ronde (1990)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gillon et al. (1995)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grier (1975)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>St. John and Rundel (1976)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kaye and Hart (1998)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kovacic et al. (1986)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td>Lynham et al. (1998)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maggs (1988)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Monleon et al. (1997)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Richter et al. (1982)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schoch and Binkley (1986)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>Vose et al. (1999)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF+US</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>Boerner et al. (1988)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF+US</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Christensen (1977)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF+US</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nissley et al. (1980)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>FF+US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rapp (1990)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blackwell et al. (1995)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Covington and Sackett (1986)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fuller (1955)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Little and Klock (1985)</td>
</tr>
<tr>
<td>BF</td>
<td>Pres-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Little and Ohmann (1988)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Covington et al. (1991)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clinton et al. (1996)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feller (1988)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knepp and Swank (1993)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Macadam (1987)</td>
</tr>
<tr>
<td>BF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stednick et al. (1982)</td>
</tr>
</tbody>
</table>
Meta-analysis assumes the independence of data being synthesized. Violation of this assumption (e.g., including multiple results from a single study) may alter the structure of the data, inflate samples and significance levels for statistical tests, and increase the probability of Type I errors, i.e., rejecting the null hypothesis when it is true (Wolf 1986, Vander Werf 1992). Some researchers consider lack of independence to be a serious problem for meta-analysis, and thus they advocate for the inclusion of only one result from each study (Vander Werf 1992, Tonhasca and Byrne 1994, Koricheva et al. 1998). However, the loss of information caused by the omission of multiple results in each study may become a more serious problem than that caused by violating the assumption of independence (Hedges and Olkin 1985, Gurevitch et al. 1992).

Table 2. Independent variables and the groups used in the meta-analysis.

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
<th>Group 7</th>
<th>Group 8</th>
<th>Group 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT</td>
<td>Fire</td>
<td>Fuel</td>
<td>FNA</td>
<td>FNC</td>
<td>SNA</td>
<td>SNC</td>
<td>NH₄⁺</td>
<td>NO₃⁻</td>
<td>References</td>
</tr>
<tr>
<td>CF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Vitousek and Matson (1985)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>SL-B</td>
<td>SL+FF</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Vose and Swank (1993)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>WF</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Andreu et al. (1996)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>WF</td>
<td>FF</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Dyrness et al. (1989)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>WF</td>
<td>FF+US</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Dumontet et al. (1996)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Kauffman et al. (1994)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Kauffman et al. (1998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Ram and Ramakrishnan (1992)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Redmann (1991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Seastedt (1988)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Seastedt and Ramundo (1990)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Turner et al. (1997)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Blank and Zamaudio (1998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Christensen (1987)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>DeBano et al. (1979)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Herman and Rundel (1989)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Marion et al. (1991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Marion et al. (1994)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Sing et al. (1991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Trabaud (1994)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Prec-B</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Wilbur and Christensen (1983)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>Prec-B</td>
<td>FF</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>DeBano et al. (1979)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>WF</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Arianoutsou-Faraggitaki and Margaris (1982)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>WF</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Baldwin and Morse (1994)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>WF</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Christensen and Muller (1975)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>WF</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Halvorson et al. (1997)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>WF</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Lynds and Baldwin (1998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>WF</td>
<td>AGB</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Marion and Black (1998)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Vegetation types include broad-leaved forests (BF), coniferous forests (CF), grasslands (GL), and shrublands (SB). Fire types include prescribed burning (Prec-B), slash burning (SL-B), and wildfire (WF). Fuel types include aboveground biomass (AGB), forest floor (FF), forest floor plus understory (FF+US), and slash plus forest floor (SL+FF). Response variables include fuel N amount (FNA), fuel N concentration (FNC), soil N amount (SNA), soil N concentration (SNC), soil ammonium pool (NH₄⁺), and soil nitrate pool (NO₃⁻).
Many researchers therefore have included more than one result from each study in their meta-analysis (Gurvitch et al. 1992, Poulin 1994, Wooster 1994, Arnbjorn and Wooster 1995, Curtis 1996, Curtis and Wang 1998).

In the analyses of FNA, FNC, SNA, and SNC, when more than one vegetation type or stand was burned in one fire or in several fires, the results were considered to be independent and were included. When there were data with different sampling dates from one stand or vegetation type, we only included the result from the earliest sampling date with an attempt to avoid replications of vegetation type, fire type, fuel type, and/or soil sampling depth. When there were several SNA and SNC data from different soil layers in each study, only the value for the surface soil layer was used in our analysis because the surface layer is most sensitive to fire (DeBano and Conrad 1978, Kutiel and Naveh 1987).

Because the level of available soil N (NH₄⁺ and NO₃⁻) varies seasonally and the response of the available N pools after fire is generally more dynamic than that of total soil N (Covington et al. 1991, Singh et al. 1991, Singh 1994), two steps were used in the analyses of soil NH₄⁺ and NO₃⁻. First, all the results from different sampling dates in each study (the number of comparisons, \(k = 184 \) and 185 for NH₄⁺ and NO₃⁻, respectively) were compiled together to examine the temporal dynamics of NH₄⁺ and NO₃⁻ after fire. In this step, the effects of vegetation, fire, fuel, and soil sampling depth on the responses of soil NH₄⁺ and NO₃⁻ were not considered because inclusion of multiple results with different sampling dates in each study caused large replications of these independent variables. Second, subdatabsets from the response peaks of soil NH₄⁺ (TAF = 0 mo, e.g., immediately after fire, \(k = 29 \)) and NO₃⁻ (TAF = 7–12 mo, \(k = 36 \)) to fire were selected and analyzed to examine the effects of these independent variables on the responses of soil NH₄⁺ and NO₃⁻ to fire. In the second step, only one comparison was included from each study unless the results came from different vegetation types or stands.

Means, standard deviations, and sample sizes for the treatment and control groups are needed in order to conduct meta-analysis. We only included studies in which means, standard deviations, and sample sizes for the treatment and control groups could be derived or inferred from the information provided. When means and standard deviations for both groups were reported, these data were used directly. When data (means and some measures of variance) were presented in the form of graphs, the figures were enlarged and manually digitized. If raw data of the treatment and control groups were given, means and standard deviations were calculated. When mean and standard error (SE) of each treatment were reported, as in most studies, the standard deviation was calculated as

\[
SD = SE \sqrt{n}
\]

where \(n \) was the sample size. If data were given with a mean and a confidence interval (CI), the standard deviation was calculated as

\[
SD = (CI_u - CI_l) / \sqrt{2n}
\]

where CI_u and CI_l were the upper and lower limits of CI, and \(\alpha \) was the significant level and equaled 1.96 when \(\alpha = 0.05 \) and 1.645 when \(\alpha = 0.10 \). When preburn and postburn fuel N concentrations in different fuel compartments (such as forest floor, understory, and slash with different diameters) were provided, means and standard deviations representing the whole-system FNC were calculated. The units with which measurements have been reported are not important since the calculated response ratios are dimensionless (Curtis 1996).

Response ratio

The response ratio, \(RR = \bar{X}_t / \bar{X}_c \), is the ratio of mean in the treatment group (\(\bar{X}_t \)) to that of the control group (\(\bar{X}_c \)). For the purpose of statistical tests, RR is converted to the metric of the natural log as

\[
ln RR = ln(\bar{X}_t / \bar{X}_c) = ln(\bar{X}_t) - ln(\bar{X}_c)
\]

If \(\bar{X}_t \) and \(\bar{X}_c \) are normally distributed and both are >0, ln(RR) is approximately normally distributed (Curtis and Wang 1998) with a mean equal to the true log.
response ratio and a variance \((v)\) approximately equal to the following:

\[
v = \frac{s_i^2}{n_i} + \frac{s_j^2}{n_j}
\]

(4)

where \(n_i\) and \(n_j\) are the sample sizes for the treatment and control groups, respectively; \(s_i\) and \(s_j\) are the standard deviations for all comparisons in the treatment and control groups, respectively.

The meta-analysis calculates a weighted log response ratio \((\ln(\text{RR}_{ij}))\) from individual \(\ln(\text{RR}_{ij})\) (\(i = 1, 2, \ldots, m; j = 1, 2, \ldots, k_i\)) by giving greater weight to studies whose estimates have greater precision \((\text{lower} v)\) so that the precision of the combined estimate and the power of the tests will increase \((\text{Hedges and Olkin 1985, Gurevitch and Hedges 1999})\). Here \(m\) is the number of groups, \(k_i\) is the number of comparisons in the \(ith\) group. The weighted mean log response ratio \((\ln(\text{RR}_{ij}))\) is calculated by

\[
\ln \text{RR}_{++} = \sum_{i=1}^{m} \sum_{j=1}^{k_i} w_{ij} \ln \text{RR}_{ij} / \sum_{i=1}^{m} \sum_{j=1}^{k_i} w_{ij}
\]

(5)

with the standard error as

\[
s(\ln \text{RR}_{++}) = \sqrt{\frac{1}{\sum_{i=1}^{m} \sum_{j=1}^{k_i} w_{ij}}}
\]

(6)

where \(w_{ij}\) is the weighting factor and is estimated by

\[
w_{ij} = 1/v.
\]

(7)

The 95% confidence interval for the log response ratio is

\[
95\% \text{CI} = \ln \text{RR}_{++} \pm 1.96s(\ln \text{RR}_{++}).
\]

(8)

The corresponding confidence limits for the response ratio can be obtained by computing their respective antilogs. If the 95% CI of a response variable overlaps with zero, the response ratio is not significantly changed. If the 95% CI of two groups overlap, the response ratios of the two groups are not significantly different from each other. Otherwise, they are statistically different.

Homogeneity test

The homogeneity test is used to determine whether at least one of the response ratios in a series of comparisons differs from the rest \((\text{Gurevitch and Hedges 1993})\). In this study, we used the homogeneity test to examine the source of variations in response ratios among comparisons and to determine whether different groups of independent variables result in quantitatively different responses. The total heterogeneity \((Q_T)\) is partitioned into within-group heterogeneity \((Q_w)\) and between-group heterogeneity \((Q_B)\) as

\[
Q_T = Q_w + Q_B
\]

(9)

which is analogous to the practice of partitioning variation in an ANOVA. The total heterogeneity \((Q_T)\) is calculated as

\[
Q_T = \sum_{i=1}^{m} \sum_{j=1}^{k_i} w_{ij}[\ln \text{RR}_{ij} - \ln \text{RR}_{++}]^2
\]

(10)

with \((\sum_{i=1}^{m} k_i - 1)\) degrees of freedom \((\text{df})\). The between-group heterogeneity \((Q_B)\) is calculated as

\[
Q_B = \sum_{i=1}^{m} \sum_{j=1}^{k_i} w_{ij}[\ln \text{RR}_{ij} - \ln \text{RR}_{++}]^2
\]

(11)

with \(\text{df} = m - 1\). The within-group heterogeneity is calculated as

\[
Q_w = \sum_{i=1}^{m} \sum_{j=1}^{k_i} w_{ij}[\ln \text{RR}_{ij} - \ln \text{RR}_{++}]^2
\]

(12)

The \(Q\) statistic approximately follows a \(\chi^2\) distribution, which allows a significance test of the null hypothesis that all response ratios are equal. The greater the value of \(Q\), the greater the heterogeneity in response ratios among comparisons. If \(Q_B\) is larger than a critical value, an independent variable has a significant influence on the response ratio \((\text{Gurevitch et al. 1992})\).

In our meta-analysis, the whole datasets in each of the six response variables were divided according to the six (fuel N) or seven (soil N) independent variables in order to explore the ecological causes of fire effects. Those interactions that were not statistically significant between the response variables and independent variables were not examined further in this study except for the interactions of SNA and SNC with TAF. The latter interactions were examined to evaluate the temporal responses of SNA and SNC to fire. In this study, the meta-analysis was conducted using the statistical software MetaWin 1.0 \((\text{Rosenberg et al. 1997})\).

RESULTS

Fire significantly reduced fuel N amount \((\text{FNA})\) by 58% \((\text{Fig. 1})\). The FNA response to fire was strongly influenced by vegetation type \((P < 0.01; \text{Table 3})\). The reduction in FNA in response to fire was 71% for broad-leaved forests, 48% for coniferous forests, 60% for grasslands, and 71% for shrublands \((\text{Fig. 2a})\). A paired comparison indicated no overlap of 95% confidence intervals between broad-leaved and coniferous forests, which suggests that the responses of FNA to fire for the two terrestrial ecosystems were significantly different. No significant difference was found among other vegetation types.

Fire-induced responses in FNA also varied with fuel types \((\text{Table 3})\), with reductions of 73% for above-ground biomass \((\text{AGB})\), 54% for forest floor \((\text{FF})\), 64% for FF plus understory \((\text{US})\), and 49% for slash fuel \((\text{SL})\) plus FF \((\text{Fig. 2b})\). The paired comparison indicated that the effects of fire on FNA were significantly different only between AGB and SL+FF.
Both fuel consumption amount (FCA) and percentage (FCP) had significant influences on the response of FNA to fire (Table 3). When FCA increased from 10 to 80 Mg/ha, the reduction in FNA increased (Fig. 3a). When FCA was >80 Mg/ha, the lack of correlation between FNA and FCA (Fig. 3a) possibly resulted from incomplete burning of coarse fuel and piled slash. When all studies were considered together, no apparent linear relationship emerged between FCA and the fire-induced reduction in FNA. Further partitioning of this dataset according to vegetation type showed a similar variability (Fig. 4a–c). In contrast to the relationship between FNA and FCA, FNA (y) decreased linearly with FCP (x; Fig. 3b) as $y = -0.926x - 2.750$ with a determinant coefficient $r^2 = 0.978$. As FCP increased from 12% to 96%, FNA was reduced by 12% to 97%. When the reduction in FNA was partitioned into different vegetation types, the relationships were still significant for broad-leaved forests (Fig. 4d; $y = -1.114x + 9.517$, $r^2 = 0.965$) and coniferous forests (Fig. 4e; $y = -1.044x + 4.219$, $r^2 = 0.970$). The relationship for grasslands was difficult to interpret because the number of comparisons was small (Fig. 4f).

Overall, fire had little influence on fuel N concen-
The effects of FCA (a–c) and FCP (d–f) on the responses of FNA to fire in broad-leaved forests (a, d), coniferous forests (b, e), and grasslands (c, f). Open circles and vertical lines represent means ± 95% confidence intervals; numbers are the number of comparisons (k). See Figs. 1 and 3 for abbreviations.

Fire caused significant increases in soil NH$_4^+$ and NO$_3^-$ (94% and 152%, respectively, Fig. 1). There was a substantial temporal variability in soil NH$_4^+$ and NO$_3^-$ after fire (TAF, $P < 0.001$; Table 3). The increase of soil NH$_4^+$ was highest immediately after fire (0 month, 199%) and asymptotically decreased to the prefire level with time (Fig. 8a). Soil NO$_3^-$ response to fire lagged behind that of NH$_4^+$. The fire-induced increase in soil NO$_3^-$ was small immediately after fire (24%), reached a peak (322%) 7–12 mo after fire, and then gradually returned to the prefire level within 5 yr (Fig. 8b). Note that the estimated increase in soil NO$_3^-$ in the period of 25–36 mo after fire was very high, which was determined from only three samples and might be biased.

Subdatasets from the peak responses of soil NH$_4^+$ (TAF = 0 mo, k = 29) and NO$_3^-$ (TAF = 7–12 mo, k = 36) were drawn to analyze the influences of different independent variables on the responses of soil NH$_4^+$.

Fig. 4. The effects of FCA (a–c) and FCP (d–f) on the responses of FNA to fire in broad-leaved forests (a, d), coniferous forests (b, e), and grasslands (c, f). Open circles and vertical lines represent means ± 95% confidence intervals; numbers are the number of comparisons (k). See Figs. 1 and 3 for abbreviations.
Figure 5. The effect of fuel type on the response of FNC to fire. Open circles and vertical lines are means ±95% confidence intervals; numbers are the number of comparisons (k). See Figs. 1 and 2 for abbreviations.

Figure 6. The effect of soil sampling depth on the response of SNC to fire. Open circles and vertical lines are means ±95% confidence intervals; numbers are the number of comparisons (k). See Fig. 1 for abbreviations.

Fire and fuel N pools

It is commonly accepted in the literature that fuel N loss is related to fire intensity (Knight 1966, DeBano et al. 1979, Marion et al. 1991, Gillon et al. 1995). The fire intensity was quantitatively represented in this study by two variables: fuel consumption amount and fuel consumption percentage because fuel load was a

Discussion

In this study, we used a meta-analysis method to search for the general patterns in the effects of fire on ecosystem N pools and dynamics from highly variable results of individual fire research projects reported in the literature. The results of our meta-analysis indicate that fire significantly reduces fuel N amount, increases soil NH₄⁺ and NO₃⁻, and has no significant effect on fuel N concentration, soil N amount, and soil N concentration. The fire-induced reduction in fuel N amount varies with vegetation type, fuel type, fuel consumption amount, and fuel consumption percentage. Fire-induced increases in soil NH₄⁺ and NO₃⁻ are influenced by fire type, time after fire, and soil sampling depth (Table 3). It appears that our meta-analysis successfully integrates the scientific literature to identify the general patterns of the short-term effects of fire on N pools and dynamics in terrestrial ecosystems. In the following sections, we will discuss these effects in more detail as well as the implications of our results for fire research and management.
Fig. 8. Temporal dynamics of the responses of soil (a) \(\text{NH}_4^+ \) and (b) \(\text{NO}_3^- \) after fire. Open circles and vertical lines are means ±95% confidence intervals; numbers are the number of comparisons (k).

Fig. 9. The effect of fire type on the peak responses of soil (a) \(\text{NH}_4^+ \) and (b) \(\text{NO}_3^- \) to fire. Open circles and vertical lines are means ±95% confidence intervals; numbers are the number of comparisons (k). Pres-B = prescribed burning, SL-B = slash burning, and WF = wildfire.

Major contributor to fire intensity (Whelan 1995). Although fuel N loss during burning significantly varied with both fuel consumption amount and percentage, the response ratio of FNA to fire was more strongly correlated with fuel consumption percentage than amount. The strong correlation resulted largely from the fact that both the response ratio and fuel consumption percentage are relative values. A given absolute quantity of N loss may be converted to different percentages for diverse ecosystems. For example, grasslands have lower aboveground biomass and lower N amount than forests. The mean loss of 120 kg N/ha in grasslands represented 53% of the fuel N amount according to all the datasets in our database whereas the mean loss of 228 kg N/ha accounted for only 43% of the fuel N amount in the coniferous forests. When the amount of N loss (y, kg/ha) was plotted against fuel consumption amount (x, Mg/ha) across all studies, a strong linear regression was found (\(y = 6.037x + 41.761 \), determinant coefficient \(r^2 = 0.802, P < 0.001, k = 57 \)). Similar regression relationships between the amount of N loss and FCA have been reported by other researchers (Raison et al. 1985a, Little and Ohmann 1988, Hobbs et al. 1991, Marion et al. 1991, Gillon et al. 1995, O'Connell and McCaw 1997). There was no linear correlation between fuel consumption amount and the percentage of fuel N loss or between fuel consumption percentage and the amount of fuel N loss (data not shown). Although analysis of raw data reached conclusions similar to those by meta-analysis regarding fuel N loss, response ratios used in the meta-analysis facilitated statistical comparisons among different projects with diverse vegetation types and other independent variables.

Vegetation type and fuel type affect the loss of fuel N mainly through the influences of fuel consumption percentage as well as other fuel properties (i.e., amount, flammability, distribution, compaction, size, density, moisture content, and chemical constituents; Binkley et al. 1992a, Kaufman et al. 1994). The responses of fuel N amount to fire for broad-leaved forests (−71%), coniferous forests (−48%), and grasslands (−60%) corresponded well with the mean fuel consumption percentage for broad-leaved forests (64%), coniferous forests (48%), and grasslands (62%). Similarly, the magnitude of the N loss during fire for different fuel types (73% for AGB > 54% for FF > 49% for SL+FF) was consistent with that of fuel consumption percentage (68% for AGB > 54% for FF > 49% for SL+FF; note that shrublands and FF+US were not discussed here because of their smaller number of comparisons). Other factors, such as fire regimes (e.g., frequency, intensity, and season), weather conditions (humidity and wind speed), and topography, have also been documented to influence fuel N loss during combustion by affecting...
Our results indicate that fire did not significantly affect fuel N concentration (Fig. 1), which suggests that the composition and C/N ratio of fuel do not change substantially. This is consistent with conclusions reached by Schoch and Binkley (1986), Binkley et al. (1992b), and O'Lear et al. (1996). The lack of an effect of fire on fuel N concentration was also reflected by the slope of 0.926 between the response of fuel N amount and fuel consumption percentage, which was not significantly different from 1 ($P > 0.05$).

Fire and total soil N pools

It has long been controversial in fire ecology whether or not fire significantly alters total soil N pools. Total soil N has been reported to increase (Klemmedson et al. 1962, Christensen 1973, Covington and Sackett 1986, Kovacic et al. 1986, Schoch and Binkley 1986), decrease (DeBano and Conrad 1978, DeBano et al. 1979, Raison et al. 1985a, b, Kutiel and Naveh 1987, Bell and Binkley 1989, Kutiel et al. 1990, Groeschl et al. 1993), or remain unchanged (Alban 1977, Richter et al. 1982, Binkley et al. 1992a, Knoepf and Swank 1993) after fire. Our analysis indicates that fire had no significant influence on soil N amount or concentration across all studies.

One of the major reasons why fire does not significantly affect total soil N is that fire-induced change in soil N is relatively small compared with the total amount of soil N within a certain sampling depth (Wright and Bailey 1982, Gillon and Rapp 1989). For example, fire-induced N loss of 65 kg/ha in Arizona chaparral only accounts for 5% of the total of 1300 kg N/ha in the upper soil layer (0–10 cm; DeBano et al. 1998). Across all the studies in our database, the mean change in SNA after fire was 43 kg N/ha, which accounted for only 3% of the preburn SNA (1481 kg N/ha). The relatively small change in total soil N cannot be detected due to the large variations in sampling, measurement, and soil N amount within each study and/or across all studies.

Inconsistency of sampling depth may have also contributed to the lack of statistical significance in the response of soil N to fire. The soil layer that is most influenced by fire is limited to the upper several centimeters. The main reason is that temperatures above 100°C are seldom reached in subsurface soil before the surface soil water evaporates completely (DeBano and Conrad 1978). DeBano and Conrad (1978) and Kutiel and Naveh (1987) suggested that the major changes in soil nutrient pools after fire would take place in the upper 0–2 cm layer of the mineral soil and that the magnitude of the changes would be correlated with the intensity and duration of the fire. If soil samples were stratified into thinner layers, significant responses of N in the topsoil might be detected. For example, in Aleppo pine forest in Israel, Kutiel and Naveh (1987) found a 25% decrease in soil N in the upper 2 cm layer after a wildfire. In our meta-analysis, we found a significant decrease in SNC (11%) with soil sampling depth ranging from 0–2.6 cm to 0–5.0 cm. The diminishing peak responses of soil NH$_4^+$ and NO$_3^-$ to fire with increasing sampling depth also support this conclusion. Because most studies have not taken this issue into consideration, we recommend using thinner and consistent soil sampling depths to facilitate comparisons across different ecosystem types.

Many factors may influence the postfire pools of total soil N. These factors include soil moisture (Wright and Bailey 1982), N deposition (Christensen and Muller 1975, Grier 1975, Christensen 1994), N transformations (fixation, nitrification, ammonification, denitrification; Kutiel et al. 1990), leaching (DeBano and Conrad 1978), soil erosion (DeBano and Conrad 1978, Diaz-Fierros et al. 1990), plant uptake (Richter et al. 1982, Kaye et al. 1999), microbial immobilization (Adams and Attiwill 1991, Kaye et al. 1999), and spatial heterogeneity (Turner et al. 1997, Grogan et al. 2000). These factors and their variabilities complicate the temporal variation in total soil N after fire and may be responsible for the inconsistency of results reported in the scientific literature. The inconsistent results yield a large standard deviation and reduce the statistical power to detect changes in total soil N pools after fire.
Fire and available soil N

Available soil N (\(\text{NH}_4^+\) and \(\text{NO}_3^-\)) can be readily taken up and assimilated by plants and thus is important for plant growth and recovery of primary productivity after fire (Raison 1979). Although the total soil N pools are not significantly affected by fire, there are significant increases in soil NH\(_4^+\) and NO\(_3^-\) after fire. This result is consistent with those of other studies (Klemmedson et al. 1962, Christensen 1973, Dunn and DeBano 1977, Kovacic et al. 1986, Kutiel et al. 1990, Rapp 1990, Singh et al. 1991, Covington and Sackett 1992, Knoepp and Swank 1993, Singh 1994, Kaye and Hart 1998). Knoepp and Swank (1993) suggested that the increase in soil NH\(_4^+\) after fire results from two processes: (1) volatilization of organic N from the soil surface and its condensation after downward movement into cooler soil layer and (2) increases in N mineralization caused by altered micro-climate, soil temperature and pH value, and microbial activities.

The temporal patterns of soil NH\(_4^+\) and NO\(_3^-\) responses to fire identified in our meta-analysis are similar to those found by Covington et al. (1991) and DeBano et al. (1998). Elevated soil NH\(_4^+\) generally persists for several months (Wilbur and Christensen 1983, Adams and Attiwill 1986) and then declines to the prefire level one year after fire (Covington et al. 1991, Monleon et al. 1997) because of increased nitrification, leaching (Dudley and Laljha 1993), microbial immobilization, and plant uptake (Kaye et al. 1999). The increased soil NH\(_4^+\), together with the altered soil pH, temperature, microbial activity, and decreased allelopathy, contributes to the increased soil N nitrification rates after fire (Christensen 1973) and results in the NO\(_3^-\) increase (Christensen 1973, Raison 1979, Kovacic et al. 1986, Kutiel and Naveh 1987, Covington et al. 1991, Baldwin and Morse 1994, Kaye and Hart 1998).

Implications for fire research and management

Our meta-analysis has identified the general patterns of the short-term effects of fire on N pools and dynamics in terrestrial ecosystems. However, the long-term effects of fire on ecosystem N are yet to be evaluated. Nitrogen pools in natural ecosystems have been built up over decades, centuries, even millennia, and much of the N is locked into very slowly cycling pools. Rapid and substantial losses of N through fuel combustion may presumably alter the long-term dynamics of N cycling (Ojima et al. 1990, 1994, Seastedt and Ramundo 1990, Binkley et al. 1992a, Blair 1997) and influence primary productivity, species composition, and community succession (McNabb and Cromack 1990, DeBano 1991, Raison et al. 1993, Ojima et al. 1994, Seastedt et al. 1994, Hoffmann 1999). Frequent burning depletes soil N pools because N replenishment is usually less than fire-induced N loss. Models simulating annual burning in tallgrass prairie suggest that soil N pools are stable initially (1–3 yr) and then decrease whereas soil N pools increase continually in the absence of burning (Ojima et al. 1990). However, few studies have been done on how the short-term responses of N to fire influence the function and structure of terrestrial ecosystems in the long term. To improve our understanding on these issues, properly designed and long-term experimental studies are needed. Such studies should use consistent methods to facilitate comparison and integration of results across various terrestrial ecosystems.

The responses of different ecosystems to fire-induced N changes vary with their vegetation type, inherent fertility, and ability to replenish N. Some ecosystems (e.g., tropical forests and savanna) are more sensitive to N loss than other ecosystems because they retain a relatively large proportion of N in the biomass (Menaut et al. 1992). In such N-limited ecosystems, fire-induced N loss can severely impact the long-term primary productivity (DeBano et al. 1998). In contrast, the coniferous forests in western Oregon are reported to maintain productive stands after losing >1.1 Mg/ha of N during stand-replacing fires (McNabb and Cromack 1990). Therefore, frequent burning as a management practice may benefit ponderosa pine forests but may be harmful for tropical forests and savanna.

Different ecosystems have different mechanisms and abilities to replenish N after fire. For example, it requires 10 yr or more for Australian eucalypt forests to naturally replace an ~50% fuel N loss caused by repeated low-intensity burning (Raison et al. 1993). On the other hand, the neotropical dry forests of northeastern Brazil need >100 yr of fallow to replace a loss of more than 500 kg N/ha (equivalent to 95% aboveground biomass N) in a severe fire (Kauffman et al. 1993). Thus, fire regimes (including frequency, interval, and season) should be determined according to the ability of different ecosystems to replenish N.

The high level of available soil N (NH\(_4^+\) and NO\(_3^-\)) after fire may compensate for the ecosystem N reduction during burning and enhance postfire plant growth (DeBano et al. 1977, 1998). Therefore, frequent burning can be used to enhance soil N availability in some ecosystems (e.g., southwestern ponderosa pine forests in USA, Covington and Sackett 1986). Elevated soil N availability after fire, however, may not be desirable in other ecosystems. For example, a twofold increase in available soil N in South Africa lowland fynbos after fire can be detrimental to the survival of indigenous species adapted to an N impoverished habitat (Musil and Midgley 1990). Hence, fire-induced increase of soil N availability may be used to promote plant growth and primary productivity in ponderosa pine forests after fire but may adversely change species composition in South Africa lowland fynbos.

Vegetation-specific responses of ecosystems to fire and fire-induced N changes necessitate appropriate fire management programs for different ecosystems. The
positive vs. negative, short-term vs. long-term effects of fire on ecosystem N, species composition, and primary productivity should be weighed for implementation of any fire management programs. Mechanisms and practices to restore and replenish N after fire should also be implemented to maintain the long-term balance of N cycling and primary productivity, particularly in N-limited ecosystems.

In conclusion, our meta-analysis indicates that fire significantly reduces fuel N amount, increases soil ammonium and nitrate availability, but does not affect fuel N concentration or total soil N amount or concentration. The reduction of fuel N amount during fire varies with vegetation type, fuel type, and fuel consumption amount and percentage. The fire-induced increases in soil ammonium and nitrate vary with fire type, time after fire, and soil sampling depth. While the general patterns of the short-term effects of fire on N pools and dynamics emerge clearly from our study, the long-term effects of fire on ecosystem N, species composition, and primary productivity are yet to be evaluated. Finally, our study illustrates vegetation-specific responses of N to fire that necessitate appropriate fire management programs for different terrestrial ecosystems.

ACKNOWLEDGMENTS

This research was financially supported partly by the U.S. Forest Service. The authors thank Peter S. Curtis, A. David McGuire, Linda L. Wallace, Chris Davey, and two anonymous reviewers whose thoughtful comments have greatly improved this manuscript.

LITERATURE CITED

Vose, J. M., and W. T. Swank. 1993. Site preparation burning to improve southern Appalachian pine-hardwood stands:

